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Abstract 

A general methodology  for damper placement in spaceborne interferometers is in- 
troduced. The process consists of combined structural/optical/damper modeling, 3.1, 
cost selection, and genetic-algorithm or simulated annealing optimization. Combined 
structural/optical modeling  allows the ability to quantitatively predict the effect of 
mechanical disturbances on optical performance metrics. 3.1, cost  allows  for the con- 
sideration of multiple dissimilar disturbance  inputs  and multiple dissimilar performance 
outputs, as well as consideration of worst-case analysis. Genetic-algorithms and simu- 
lated  annealing allow  for an efficient search of a high-dimensional optimization space. 
A numerical example is  shown to demonstrate the methodology. A comparison of 
placement of a finite-number of passive dampers using  genetic algorithms,  simulated 
annealing, and exhaustive search is considered. Finally, the effect of different numbers 
of passive dampers is examined. 
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Nomenclat we  

c, = scalar  damping coefficient 

e, = chromosome probability 

fi, f v ,  fi = force disturbance from reaction wheel input along z,y,  and z axis 

g ( t )  = impulse response  matrix, g ( t )  = L"[G(s)] 

j = J"T: imaginary  unit 

n = number of degrees of freedom  in finite-element model 

pi = integer valued member of set P 
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p = vector of possible damper locations E R" whose members are  in P 

p' = optimal  damper location vector E R" whose members are in P 

pc = genetic probability of crossover 

pos = random genetic crossover position 

qi = chromosome cumulative probability 

q(t)  = nodal vector 

s = complex Laplace variable 

sp = size of genetic population , 

t ,  t o ,  t f  = time,  initial  and final time 

vi = axial displacement rate 

w(t )  = (7 x 1) disturbance input vector 

y(t) = displacement output vector 

z( t )  = system state vector 

z = (2 x 1) performance output vector 

A, B,, C, D = system state space system representation 

G(s)  = system  transfer function matrix 

GA = genetic algorithm 

COMP = controlled optics modeling  package software 

I M O S  = integrated modeling of optical systems software 

M ,  K ,  L = mass, stiffness, and disturbance influence matrices 

N = number of possible damper locations (number of elements in P )  
OPD = optical path difference 

BP = Boltzmann probability 

S A  = simulated annealing 

T P F  = terrestrial  planet finder 

W F D  = wavefront tilt difference 

W F ~ , , t ~ , z , g  = wavefront tilt 

D = damping matrix 

F = total fitness of population 

,7 = cost functional . 
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K: = number of dampers  to be  placed  (fixed integer) 

C( e ) ,  L - l (* )  = Laplace  and inverse Laplace transform  operators 

Af = maximum damper location value 

P = indexed set of possible (feasible) damper  locations 

S = optical  sensitivity  matrix 

Wi, W, = input  and  output weighting matrices 

Si = damper  actuator force 

u1 ,u2 = disturbance force input by deldy lines 

$( i )  = random scalar 

y = output weighting scalar 

q = modal amplitude vector 

p = pseudotemperature 

r,, ra, = torque  disturbance from reaction wheel input around z and y axis 

0 = wavefront tilt 

w = frequency in radians/sec 

T = maximum singular value 

@ = modal matrix 

A = diagonal structural eigenvalue matrix 

r, = damper iduence matrix 

Alc, = change in stiffness matrix  due to damper 

11 0 112,II 0 2-norm and oo-norm 

()' = transpose 

== is defined as 

* = convolution operator 

A 

1 Introduction 
Several space  observatories of the next century  are currently being designed that make use 
of optical interferometry. Many of these observatories will  be composed of large  space  struc- 
tures  and  small  distributed optical elements that work together to synthesize very large 
optics. In order to work correctly, these systems  must  maintain  relative  positions of optical 
elements to within tens of nanometers. This unprecedented stringent  requirement makes 
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vibration attenuation extremely important.  There are many possible sources of disturbance 
input  to such systems. These include attitude control system disturbances,  internal moving 
mechanical parts, controlled optics disturbances,  thermal  disturbances,  and microdynamic 
disturbances. Even the smallest disturbance may  cause violation of the nanometer perfor- 
mance constraint unless a superior vibration  attenuation  strategy is employed. It is generally 
believed that acceptable  vibration attenuation will  be  achieved through a combination of 
three technologies: reaction wheel isolation, placement of passive/active damped  struts,  and 
active  optical  compensation. Although still  not completely solved, past  papers have dealt 
with both interferometer optical control systems [l] and reaction wheel vibration isolation 
technology [2]. In  this  paper, we significantly extend the methods used in [3] for optimal 
passive damper  placement for interferopeters. 

The  subject of active/passive damper placement is of interest in many  applications  and 
has been the  subject of study in the  past. Chen et. al. [4] consider a time-domain cost 
functional based on a scalar dissipation energy.  Milman and Chu [5] consider both  an 3-12 

optimization  problem from a scalar input to a scalar displacement metric,  and a problem 
based on a  scalar modal damping metric. For  many systems, such as space interferometers, 
several distinct  disturbance sources may be acting at once. For example,  reaction wheels  may 
be  operating while controlled optics  are moving. In  addition, several dissimilar performance 
variables may be of interest  at once. For interferometers, two separate  optical performance 
metrics  are of interest. Therefore, we introduce a cost criterion based on a system 3-1, norm 
that allows consideration of multiple dissimilar disturbance sources and multiple dissimilar 
performance metrics. This method also allows analysis of a worst-case disturbance. 

Like [4], [5], [6], we consider a  discrete combinatorial optimization problem of a finite 
number of dampers and finite number of possible damper locations. Therefore, true global 
optimization is possible as the number of possible combinations is finite and discrete,  but 
not  practical since the number of possible combinations grows as ( N ! ) ( N - K ) ! ,  N !  where N is the 
number of possible damper locations and K: is the number of dampers to  be placed. Therefore, 
some heuristic  optimization technique is often applied. Many past  damper  optimization 
papers have studied simulated  annealing [4] [5] [6]. In this paper, we study a genetic- 
algorithm (GA) method  and compare it  to a simulated annealing (SA) method for an example 
problem. Outside the dynamics and control field, .Brooks, et.  al. [7] compared GA and 
SA algorithms for an economic discrete combinatorial optimization  problem using a single 
scalar cost output.  Their goal was to choose an optimal  suite of sensors for a generic system 
given only sensor financial cost and reliability constraints. They found simulated annealing 
obtained a high quality solution much faster than  the genetic algorithm. As more and more 
examples of GA and SA comparisons become available, it will be interesting  to compare the 
utility of these  optimization techniques across fields. 

The  contribution of this paper to previous large space structure  damper placement is (1) 
the  introduction of a new cost functional based on an 3-1, norm that allows multiple dissimilar 
disturbance sources and multiple dissimilar performance outputs, (2) the application of a GA- 
based optimization  algorithm  and comparison to previously reported  simulated annealing 
methods,  and (3) the development of a general methodology for damper placement, targeted 
to spaceborne  interferometers using integrated  optical-structural  modeling. 

This  paper is organized as follows. In section 2, we introduce spaceborne  interferometer 
systems  and relevant performance metrics and  disturbance sources. 111 section 3, we describe 
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the passive damper placement problem and  introduce  a solution methodology. The next 
sections describe each step of the proposed solut,ion methodology. Section 4 describes inte- 
grated  structural/optical modeling. Section 5 describes passive damper modeling. Section 6 
introduces the 3-1, cost functional. Section 7 describes genetic-algorithm optimization. Sec- 
tion 8 describes  simulated annealing optimization. Section 9 considers a numerical example 
demonstrating  the methodology for a  sample  interferometer design. Genetic  algorithm  and 
simulated  annealing  optimization  are compared for the example problem. In  addition,  the 
effect of an increasing number of dampers is considered. Section 10 outlines conclusions and 
future research directions. 

2 Optical Interferorneeers 
Spaceborne  interferometers collect light from a single celestial object at two separate points 
in  space using light collecting optics [8]. They then combine the light from the collectors 
to produce  interference fringes, due  to  the wave nature of electro-magnetic radiation.  These 
interference fringes can be processed to measure positions of celestial objects  in  the sky. 
If several fringe patterns are produced for a single source by collecting light at different 
points  in a two dimensional plane in space,  a two-dimensional image of the  object may be 
reconstructed using synthesis aperture imaging [9]. 

An artist’s conception of the proposed NASA Terrestrial  Planet  Finder (TPF) interfer- 
ometer is shown in figure 1. Mounted on top of the TPF truss structure  are five sets of 

bc 3 0 R  

Figure 1: The monolithic Terrestrial  Planet Finder concept. 
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optics:  four light collector systems (circular disks on picture) and  one light combiner system 
at the center of the  spacecraft.  The two innermost  and two outermost collector systems  act 
as two separate interferometers. Each interferometer uses the combiner optics of the central 
light combiner system. 

2.1 Optical  Performance  Metrics 
Two  key requirements for any  spaceborne interferometer are (1) equalization of optical  path- 
length  and (2) equalization of  wavefront tilt,  both in the face of multiple  disturbance sources. 
Optical  pathlength is defined as the  total distance light rays travel from the celestial object 
being studied  through a single set of cqllector system  optics to finally the  point  in  the com- 
biner  system where light is interfered. For a single interferometer, two  optical  pathlengths 
axe important. Each  is associated with a single collector/ combiner system. An optical 
pathlength is  shown graphically in figure 2. In order for an interferometer to perform as 
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Figure 2: (a) The optical  pathlength associated with one arm of a single baseline. 
OPD=(Ll+L2)-(Ll'+L2'). (b) Two-dimensional graphical representation of wavefront tilt. 
Figure shows wavefront of light arriving to beam combiner. Axis z is normal to beam com- 
biner (detector)  plane. Angle 8 is tilt  around the local y-axis (out of page).  In  bottom figure, 
wavefront tilt is zero. 

intended,  the optical  pathlengths from each of the two arms of a single baseline must be 
equalized to within tens of nanometers. The difference  in pathlength from each of the two 
interferometer  arms is  called optical  path difference (OPD). 
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Disturbance Sources Type 
Attitude Control Actuators Localized 

Delay-line Reaction 
Localized Siderostat Reaction 
Localized 

Thermal  Expansion/Contraction 
Distributed Microdynamic 
Distributed 
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Table 1: Typical  disturbance sources for optical interferometers. Localized disturbance 
sources can  be  traced to a specific location on the interferometer, while distributed sources 
exert influence  over a wide  region. 

Wavefront tilt is defined as the angle a beam cross-section cuts  with  respect to a detector- 
based coordinate  system.  In order for interference fringes to be uncorrupted,  the wavefront 
tilts of the two beams to be interfered must be equal. Wavefront tilt  (WFT) is  shown 
graphically in figure 2 for tilt  around the detector-local y axis. Tilt  can also be com- 
puted for the detector-local x axis. Interferometers  are concerned with total  tilt defined 
as WFzotd = ,/WFT,2 + WFT’. The difference in wavefront tilts from each of the two 
arms of the interferometer is  called  wavefront tilt difference (WFD). 

A 

2.2 Disturbance Sources 
There  are several disturbance sources on a spaceborne interferometer that will cause both 
pathlength difference and  tilt. The  characterization of all disturbances is an ongoing effort. 
Some of the most significant sources are listed in table 1. Localized disturbance sources can 
be traced to a specific location on the interferometer, while distributed sources exert influence 
over a wide region. In  this paper, we focus on sources of disturbance that  are ZocaZzzed. We 
assume reaction wheel disturbances applied to  the spacecraft bus and delay-line disturbance 
forces applied at the locations of the controlled-delay line trolley. Distributed sources of 
disturbance  may  be modeled as perturbations of several or all truss  joint  locations. 

As a reaction wheel spins to provide attitude control authority, it also imparts unwanted 
disturbance forces and torques to  the spacecraft. These unwanted forces and torques are 
caused by static  and dynamic imbalances in the wheel, as well as ball-bearing imperfections 
and electronics noise [lo]. The  nature of reaction wheel disturbances  change as the  rotation 
speed of the wheel changes. In practice, five disturbances  are modeled for each wheel  used in 
the  attitude control  system (in reaction wheel local coordinates): one axial force disturbance, 
two radial force disturbances,  and two  wobble torque  disturbances.  These are shown in 
figure 3. In  this  paper, we assume a single reaction wheel imparting  disturbances in the five 
directions  shown. 

Delay-lines consist of a series of optics mounted on moving trolleys. They are used to 
actively equalize pathlength.  The trolleys move  in  only  one direction, parallel to the in- 
terferometer truss. However, as they move along their tracks, they also impart mechanical 
disturbances  into  the  system.  The exact nature of the disturbances is still  under investi- 
gation.  Preliminary  results suggest that these  disturbances are several orders of magnitude 
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Figure 3: Reaction Wheel Disturbance Forces.  Axes 1 and 3 are fixed to wheel and  rotate 
with wheel. Axis 3 is the control torquing axis. 

below the reaction wheel disturbances. However, they  are also much closer to  the optics of 
the interferometer. In general, this  disturbance will also be in six directions (three transla- 
tional  and  three  rotational components). For this paper, we assume a general  disturbance 
in only the direction the delay-line trolley moves. We also assume one delay-line for  each 
interferometer arm. 

The result of these  disturbances  and performance metrics is a 7-input/%output  system, 

OPD [ W F D  

where fi,fv, and f z  denote force disturbances  input by the reaction wheel, T = , T ~  denote 
torque  disturbances  input by the reaction wheel, and v1,v2 are force disturbances  put in by 
each delay line assembly. Then, 

z = G w  (2) 

In section 4, we will see how to obtain interferometer A,  Bw, C ,  and D matrices using 
integrated  structural/optical modeling. 



S.S. Joshi,  Damper Placement for Spaceborne Interferometers 9 

3 Interferometer  Damper  Placement  Problem  and So- 
lution  Methodology 

Assume that  there  exists only a discrete number of possible locations that a passive damper 
may be  placed.  Index every  possible location with consecutive integers. This indexed set of 
locations is  given by the integer set P. 

Problem 

Given: 

0 interferometer  system  architecture 

0 number of passive dampers to be placed,K (fixed), and indexed set of possible damper 
locations,P 

Find: 

0 optimal  locations for K dampers, p* = [pi, pa . . . p x ]  with pt E P A 

Solution 

The methodology we propose to solve this problem is  composed of four  steps: 

1. Develop accurate linear model of interferometer using integrated  structural/optical 
modeling: G( s )  . 

2. Model passive dampers within interferometer: G(s,p). 

3. Express cost functional ,7 in  terms of ?-tm norm. 

4. Employ genetic algorithm or  simulated annealing optimization to determine  optimal 
damper  locations, p'. I 

The  next sections will describe each step  in this.process. 

4 Integrated  Structural/Optical  Modeling 
A linear integrated model of a  spaceborne interferometer consists of a structural model 
and  an optics model that are coupled. We apply finite-element structural modeling to our 
problem. Finite-element models describe how external forces  lead to small  displacement and 
small angle motion at specified points within the  structural system. Similarly, differential 
ray tracing  methods use  basic  reflection and refraction properties of optical elements to 
ascertain the effects of small  displacement and small angle motion of the optical elements on 
ray position,  direction,  and length. The common interface between the two models is nodal 
location. Finite-element structural models transform  external forces to nodal movement; 
linear optical models transform nodal movement to optical path difference and wavefront 
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tilt. In anticipation of the many applications for integrated models, JPL has developed 
a number of in-house software tools to aid development of integrated FEM/optics models. 
These  include the  Integrated Modeling of Optical Systems (IMOS)[11] and Controlled  Optics 
Modeling Package (COMP) [12] software packages. 

The core of the integrated model is a finite-element structural  model [13] that models 
the boom structure, system bus, optical  mounts, and attitude control  hardware.  The result 
of the finite-element model is a linear (small strain) deformation  model of the form 

M -  + Kq(t)  = Lw(t) &(t> 
dt2 . 

where q(t) is a (n x 1) vector of all nodal degrees of freedom of the  system, M is the (n x n) 
mass matrix of the  system, K is the (n x n) stiffness matrix, w(t) is a 0, x 1) vector of all 
external  disturbance forces, and L is the (n x p )  disturbance force influence matrix. 

Define the eigenvector & and the eigenvalue Xi as the solution to 

( K  - X,M)& = 0,  i = 1 . . . n (5) 

. Let Qi = [@I . . . &J and A = dzag[Al. . . X,]. By  defining a modal amplitude vector 7, 
q = 'Pq and  mass  normalizing  the mass matrix, (4) can be written as 

A 

A 

" @ )  + A2q(t) = @Lw(t) 
dt2 

. General  modal 
damping matrix, 

damping is introduced  into the formulation by defining a diagonal modal 
2, and appending (6)  as 

This damping is in addition  to any  damping  introduced by the  damped struts described in 
section 5. 

The linear  optical  model is created using differentihl ray  tracing (121. Ray  tracing  captures 
the particle nature of light from a geometric standpoint. In geometric  optics,  light beams 
are represented as bundles of rays, which are trajectories of the  individual  photons. Rays 
are generally composed of  numerous straight-line segments, with direction  changes at the 
reflective (or refractive)  surfaces of optical  elements. Using this  method [14], sensitivities 
may be  computed that relate small rotations  and displacements of optical  mounting  locations 
to  OPD  and WFD, 

z =sq 
where S is called the  optical sensitivity  matrix. 

We may convert the linear structural  and optical 
form. Let 

(8) 

models into a first-order state space 

(9) 



S.S. Joshi,  Damper  Placement for Spaceborne Interferometers 

Then 

" dz(t )  - Az(t)  + B,w(t) 
dt 

where 

cdq 0 1  D = O  . 
In order to obtain  optical  outputs, 

11 

where C = sed. Once  the  state-space  system, A,  B,, C, D ,  is defined, we may  create a 
system  transfer  function  matrix of the form, G(s) = C[sI - A]"B,. 

a 

5 Passive Damper Modeling 
Passive dampers  are incorporated  into the FEM model as viscous dampers based on the 
Honeywell 'D-strut' [15] concept. A viscous damping force is created along the axial direction 
that is proportional to  the axial displacement rate of an individual strut's  beam element. In 
this article,  it is assumed that the new passive damping element and the original  truss beam 
element have the  same stiffness, although  significant  advantage can be gained by optimizing 
these  parameters as well [5]. A new model with a passive damping element,  denoted by the 
subscript i ,  is written as (in physical coordinates) 

where ri is the influence vector associated with an axial force between  two  nodes of the 
structure, 6, is a damper  actuator force as in [5], and Aki is the change in  stiffness  associated 
with the change  in  elastic modulus of the  damper beam  element. The force Si is modeled as 
a linear velocity feedback so 

where c, is a scalar  parameter used to change the value of damping. Recall  in this  report, 
Aki = 0. By substituting (16) into (15), we obtain a damping matrix, V ,  A 

where V E,",, &rir;. Using this  formulation, (17) can replace (4). 
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6 3.1, Cost Functional 
Using the  state  space description of the  system (10-14), we obtained 

" dz(t )  - A z ( t )  + B,w(t) 
d t  
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Z ( t )  = Cz(t)  + Dw(t) (19) 
where w(t )  is a (7 X 1) disturbance input vector that represents the five reaction wheel 
disturbance  directions  and  the two  delay-line disturbance directions (1). The  output vector 
~ ( t )  is a (2 x 1) performance output vector that includes OPD and WFD (2). 

The  transfer function of the MIMO system is defined (3) as 

(assuming D = 0) and its corresponding impulse response matrix, g ( t ,  p ) ,  

where s is a complex Laplace variable and represents the inverse Laplace transform 
operator.  Note that is our case, G(s,p) is a (7 x 2) transfer function matrix.  The matrix 
gain of a MIMO system can be described by the ,-norm  of a transfer  function  matrix, 

11 w(t )  112 is not bounded over an infinite interval, the definition of 11 
generalized [lS] to 

where [to, t f ]  is a finite time interval. Let a[G(jw)T d e h e  the maximum singular value of 
G(jw)  for a given w. Then,  it can be shown, . 

= SUP[C(~WI - A)"&] (24) 
W 

The objective of the  damper placement problem, for the MIMO case, is then, 

where P represents set of  all  possible damper locations. The  optimization places dampers 
in optimal  locations to minimize the worst-possible system gain from  disturbance sources 
to  output. Note that sup, is a continuous optimization problem and  minp is a discrete 
combinatorial  optimization problem. The determination of 11 G 1100 can be done using the 
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nonnhinflm) function in MATLAB, which  uses a binary search algorithm for optimization 

For systems with dissimilar inputs  and/or  outputs, weighting matrices  can be  incorpo- 
rated into  the  optimization cost function. In  this way, the solution is  not skewed by inputs 
or outputs  that differ in magnitude solely  because of units. For the interferometer case, 
this is important as OPD has units of meters  and WFD has units of radians.  In  addition, 
reaction wheel disturbances and delay-line disturbances may  have very different magnitudes. 
Therefore, we define two (2 x 2) weighting matrices, Wo and W,. Then  the optimization 
problem (25) is modified as  

[171. 

min 11 WoG(u,p)Wi l l o o  P (26) 
Wo is used to weight the perforrriance output  and Wi is used to weight the disturbance 
inputs. Since we would like OPD and WFD to have comparable effects on the optimization 
problem, we select 7 such that 

I I  G ~ + O P D  Ilm= Y I I  G - W F D  ll, (27) 

where G w - , ~ p D  and G w - , w ~ ~  are (7 x 1) transfer function matrices to a single output with 
only modal damping (zero passive dumper elements). Then 

Less is known about relative magnitudes of localized interferometer disturbance sources. 
Therefore, an identity  matrix is chosen  for Wi. This choice  has two  interpretations: (1) 
delay-line disturbances have the same relative effect  on the ‘H, norm as the reaction wheel 
disturbances (unlikely) or (2) the  disturbances have  been  preweighted before being applied. 
Note that,  in general, the weighting matrices W o ( j w )  and W,( jw)  can be functions of fre- 
quency. As more is learned about the relative nature of disturbances, a frequency-shaped 
weighting matrix  may  be more appropriate. 

7 Genetic  Algorithm  Optimization 
In the  past  decade, powerful new heuristic optimization techniques have developed  based on 
the biological processes of evolution, adaptation, and survival of the  fittest. These methods 
are broadly defined under  the term “evolutionary programs.” One  popular  algorithm used 
in optimization is the genetic algorithm (GA). Unlike other popular heuristic optimization 
techniques (such as simulated annealing) GA methods maintain a fami ly  of solutions, called 
a population, at every iteration. Between iterations,  the members of each  population, called 
chromosomes, interact with each other to form a new population. Every new population is 
called a generation. Eventually, with enough generations, a near-optimal solution is obtained. 
The theoretical  foundation of GA methods lie  in the computer science notion of a schema 
(181. Note however,  like other heuristic optimization techniques, optimally is not  guaranteed. 
We implement a GA method based  on  seven  common steps [ M I :  (1) binary  representation of 
chromosomes, (2) random selection of initial population, (3) selection  of fittest chromosomes, 
(4) crossover, (5) mutation, ( 6 )  chromosome repair, and (7) evaluation. 
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Representation of Chromosomes 

An individual chromosome represents a possible solution to  the  damper placement problem. 
First, all possible damper locations are ordered and assigned an integer label, 1 . . . N .  Each 
label is then represented in binary form.  For example location “94” is “1011110”. The binary 
locations  are  appended to form a single  chromosome.  For example, if three  dampers  are to 
be placed, a possible solution is [8 34 911. This means one damper is placed at location 8, one 
at location 34, and finally  one at location 91. The chromosome associated with this solution 
is [OOOlOOOOlOOOlOlOllOllJ .  Leading zeros are added so each binary  location is represented 
by the same number of bits. Since the number of dampers to  be placed , X ,  remains fixed, 
the  length of each chromosome also remains f i x e d .  

Random Selection of Initial  Population 

The size, sp, of a population determines the number of chromosomes that make up a popula- 
tion. For an initial  population, solutions are created at random. For the  damper placement 
problem, a restriction is  imposed that only one damper may  be placed at any given location. 

Selection of Fittest Chromosomes 

Given a population, each  chromosome may be evaluated for its fitness. In our case, the 
fittest chromosome is one with the lowest 11 W,GWi /loo (26) cost, denoted J( i ) .  From a 
given population, a new population is created by the following selection process: 

0 Calculate total fitness of a population, 3, defined as 3 fi xi”,, J ( i )  

0 Calculate a probability, e,  for  each  chromosome, e = J( i ) /F  

0 Calculate a cumulative probability, qi, for each  chromosome, qi 2 e( i )  

0 Generate sp random floats, +(z), from [0,1] 

A 

. I  

If $(i) < q1, then select  chromosome 1; else  select ,the ith chromosome such that 
Qi-1 < +(i) < Qt 

Note that with this process, some  chromosomes will  be  selected more than once. In the end, 
the  total size of the new population will remain sp. 

Crossover 

Given the new selected population, it is now modified  using the crossover operation. Crossover 
can be thought of as the mating of  two  chromosomes to create children chromosomes. First, 
a probability of crossover, PC,  is defined. This is the probability that any given  chromo- 
some within a population will be  chosen  for  crossover. Then, for each chromosome in the 
population, 
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e Generate a random float, $(z), from [0,1] 

e If $(i)  < PC, then select  chromosome for crosmver 

e Pair  up all selected chromosomes. If number of selected chromosomes is not even, 
randomly add  another from the population 

e Generate a random integer, pos, for  each pair.  This is the crossover point within a 
chromosome pair 

0 Perform crossover for  each pair; i.e. replace (ala2 , . . t+%+1. . . and (bib . . . bmbm+l . . . b 
with ( a l e . .  .+&+I.. . bm) and (bib.. . b m ~ + a + l . .  . om)  

This operation  creates yet another  intermediate population. 

Mutation 

Mutation is another  operation  to create an additional intermediate population.  This opera- 
tion occurs on each bit within each chromosome of a population. First, define a probability 
of mutation, p m .  Then for  each bit, 

e Generate a random float, +(i), from [OJ] 

If +(i) < p m ,  then select bit for mutation 

For  each selected bit, if it is 0, change to 1 and vise  versa. 

Typically, the probability of mutation, p m ,  is  much  lower than  the  probability of  crossover, 
PC. This operation  creates one  more intermediate  population. 

Chromosome Repair 

Given the selection, crossover, and  mutation  operators, a new population arises. However, 
this population was not subject to any practical conitrainis. For instance, a chromosome in 
the new population could generate damper locations than are greater than n/. In addition, 
chromosomes may appear with repeated damper locations. There are many ways to handle 
such a situation.  One could  proceed with the infeasible solutions and heavily penalize the 
chromosomes in the selection phase. In this way, the chromosomes  would not survive in 
the selection step.  This is  sometimes  referred to as the “death  penalty”.  Another way to 
proceed is to repair the infeasible solutions. In this work, we identify the chromosomes with 
infeasible damper  locations and then replace them with the best chromosome of the previous 
generation. This repaired population becomes a generation. 

Generation  Evaluation 

Given the final repaired population, each chromosome is evaluated and  its best solution is 
identified. The process then continues with the Selection of Fittest Chromosomes step. 
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8 Simulated Annealing (SA) 
Simulated  annealing has previously  been  used  for discrete optimization in damper placement 
problems by [5] and [4]. Therefore, it is not discussed in as much detail as Genetic Algorithms. 
Most common combinatorial  optimization  routines follow an  iterative  improvement  strategy 
in which a trial  solution cost is compared to  the previous low combination  cost. If the 
new cost is lower, then  the trial solution is deemed the new low-cost combination.  This 
method will find local minima, but has the disadvantage of being stuck  in a particular local 
minimum even though  other local minima may provide a lower overall cost. The simulated 
annealing  strategy differs in  that is occasionally accepts a trial  solution as the new  low-cost 
solution even though the new cost has  actually increased. This occasional  acceptance of a 
non-improving trial combination  allows'the  current solution to  jump to other local minima. 
The  probability of accepting a non-improving solution is governed by a so called  Boltzmann 
probability  function 

B p  = ,-AJ/P (29) 
where AJ' is the change in cost  from the previous low-cost combination and p is a free- 
parameter known as the pseudo-temperature. p is  slowly  decreased as the  algorithm pro- 
ceeds. It is to be  noted  that as the  temperature decreases, the  probability of accepting  a 
non-improving solution also decreases. This forms a convergence pattern  in which initially 
many non-improving solutions  are accepted resulting in increased overall cost,  but eventually 
the search settles  to a particular local minimum  region  where only lower cost combinations 
are accepted.  Note also that large increases in 3 (large positive AJ), prohibit the acceptance 
of a non-improving trial combination. In the simulated annealing routine we implemented, 
a new trial  combination is created by perturbing one element  in the  current low-cost combi- 
nation.  The element which is perturbed is selected by a uniform random  number  generator. 
This element is changed to a random value in  the space of all possible damper locations 
again by a uniform  random number generator. 

9 Numerical Example 

9.1 Example  Interferometer  Description 
Consider a model of a free-flying, 10 meter baseline, dual-star feed interferometer.  The 
model includes two trusses on  which collecting apertures  are  mounted, a rigid central bus 
node modeled after  the NASA Space Shuttle ASTRO-SPAS carrier, and  attachment points 
for the  optical elements.  The ASTRO-SPAS bus node is connected to  an optics node via 
a rigid body  element.  The two trusses  are composed af interlocking six-degree-of-freedom 
beam elements. The ASTRO-SPAS bus node is connected to the trusses by four rigid body 
elements to each of the four corners of each truss.  The geometry of the interferometer 
structure  and  disturbance input locations are shown in figure 4. 

The  length of each of  the two trusses is 4 meters.  It is partitioned into 4 one-meter long 
bays. The cross section  of each  bay  is 0.28 x 0.28 m2. Each truss is composed of 57 IMOS 
beam elements [ll]. The first four non rigid-body modes of the  interferometer structure are 
shown in figure 5. 
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Figure 4: Representative Interferometer. Reaction wheel disturbances are  input at the bus. 
Delay line disturbances  are input on the trusses. 

From the  double truss interferometer model, standard mass and stiffness  matrices as- 
sociated  with a finite-element model  were obtained.  The model contained 408 degrees of 
freedom in physical  coordinates.  This  resulted  in physical-coordinate mass, M ,  and stiff- 
ness, K ,  matrices E 7EaXao8. Of the 408 degrees of freedom, several  were dependent  DOF's. 
The  dependent degrees of freedom  were due  to rigid body element connections.  After re- 
moving these dependent degrees of freedom, 162 degrees of  freedom remained,  resulting in 
reduced mass and stif€ness matrices, Mr and K,, E 7Z162x162. This model was still too large 
to be  analyzed  repeatedly. As a  result, the model was truncated. A transformation  matrix, 

E 7Z162x50 was composed of 50 eigenvectors, 

where [dl, 4 2 ,  . . . , 461 were the rigid-body  modes. 
A reduced order  system was then produced as 

where W M Q ,  E R50x50, a t K @  E and QtL E R50 . 
Before arriving at the interference point, light rays trace a path  through several  optical 

elements  including  siderostats, beam compressors, and  steering  mirrors [8]. This defines an 
optical  sensitivity  matrix S .  
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4-Bay TNSS lSlS m o d e l :  mode 9, 5.76158 Hz 4-Bay Truss lSlS model: mode 10, 6.23295 Hz 

Figure 5: First four structural modes of interferometer. 

9.2 2 Damper  Placement 
There  are 94 possible locations for a passive damper in this model.  Using the binomial 
coefficient formula, the  total number of possible damper combinations grows as [19], 

94! 
94!(94 - X ) !  

where K: is the number of dampers to be placed (fixed). For  even a small number of dampers, 
true global optimization is infeasible.  However, to understand how GA and SA optimization 
are performing, it is important  to have a true optimal for  comparison. Therefore, we compute 
a true  optimal for 2-damper placement. 

True Optimization  (Exhaustive Search) 

The search  space for 2-damper optimization contains 4371 points. Figure 6 shows a complete 
characterization of the cost functional for 2-damper placement, each with c, = 7.005 x lo4 
Ns/m. This value is representative of the values of the Honeywell dampers  built for previous 
structures work done at JPL (151. In addition, .l% modal damping is assumed in the model. 
Note that since two dampers cannot occupy the same location, the  diagonal of the search 
space is not valid. Also, since  ordered sets  are  not needed (solution [1,2] solution [2,1]), 
the search  space is limited to half the square. The  true optimal combination is [87,22]. The 
damper  locations corresponding to  this combination are shown  in figure 7. The cost for this 
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1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 3  
Damper Position 1 

Figure 6: Cost functional, 3, as a function of two damper locations.  Blue  color is low cost 
(good) and red color is high  cost (bad).  The optimal location  is  [87,22]. 

Population Size (sp) 10 
Probability of Crossover ( P C )  

0.02 Probability of Mutation (pm) 
0.40 

Number of Generations 48 

Table 2: Parameters chosen  for  GA optimization. 

optimal is 3 = 2.21e - 3. For 2 dampers,  this exhaustive search took 24.3 hours on a SUN 
UltraSparc 20, or approximately 20 seconds per cost  evaluation.  For just 3 dampers, an 
exhaustive search would take over 31 days. 

In  the following sections. we compare both performance and runtime for 2-damper o p  
timization using both  the GA and SA optimization method. Runtime is dominated by the 
evaluation of the cost functional, 3. Therefore, the runtime is  defined in  terms of the number 
of times the cost functional is evaluated. 

GA Optimization 

The same 2-damper optinlization is  now perforwed using the GA. The relevant param- 
eters for the GA are shown in table 2. Figures (8) shows a representative GA optimization 
search pattern for the optimal placement of two  clanlpers,  each with c, = 7.005 X lo4 Ns/m 
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Figure 7: Optimal location for  two dampers. c, = 7.005 x lo4 Ns/m. 

. In  addition, .l% modal damping is assumed in the model. Initial chromosomes are chosen 
at random. The  optimal solution location is shown as a star. After 48 generations, the sub- 
optimal solution obtained is [89,22]. This solution represents a cost J = 2.77e - 3. Figure 9 
shows the initial and final damper locations as a result of the  optimization. All the l’s,2’s, 
etc. represent the  random initial damper locations for  each chromosome in  the population. 
Note that although the true optimal solution was not achieved, the  suboptimal solution took 
a total of 480 cost evaluations (48 generations x 10 chromosomes) to  complete. This is less 
that 12 percent of the full optimization runtime. 

.. 
Simulated Annealing Optimization 

Figures 10 shows a representative simulated annealing optimization run for the optimal 
placement of four dampers, each with c, = 7.005 x lo4 Ns/m . In addition, .l% modal 
damping is assumed in  the model.  An initial damper combination  is chosen at random; in this 
case (51,521. The curve represents the search pattern in damper location space. In  this case, 
the  optimization converged to  the (suboptimal) location (89,221 in 311 evaluations. The cost 
of the  suboptimal  solution was 3 = 2.77e - 3 (which by coincidence was the GA solution). 
For other  initial damper locations, the true  optimum was achieved  for similar runtimes. 
Figure 11 shows the  initial and final damper locations as a result of the optimization. 
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Figure 8: GA Optimization Search Pattern: 2 Dampers. The circles on the lower right 
triangle show the locations checked; the star represents the true  optimal  solution. 

9.3 Comparison of GA and SA algorithms 
Several observations result from comparing the two optimization schemes. First,  both algo- 
rithms  obtain  (suboptimal), but excellent solutions in a fraction of the runtime needed for 
true optimization.  Indeed,  true optimization is essentially impossible  for anything more than 
2 dampers. However, the SA algorithm outperformed the GA algorithm for this problem. 
The quality  of both solutions was excellent. However, the SA algorithm was about twice as 
fast in  obtaining a solution.  In  particular, the SA algorithm benefited from an observed "slot 
machine"  effect. Once a.n optimal damper  location was achieved for a single damper, this 
element of the solution combination was rarely changa. Instead, it was locked in place while 
other  dampers were optimally placed. In this way, the optimization proceeded in almost a 
damper by damper succession. This was not the case with GA optimization, as crossover and 
mutation produced different damper locations at each iteration. Both  optimization meth- 
ods depend very much on governing parameters. We found that  the SA routine regularly 
converged to a single solution. Convergence was harder to establish for the GA routine. 
This will especially be  true in the usual case where the  true  optimum is unknown. One 
rule of thumb we found helpful was the evaluation of total fitness, 3, for  each generation. 
Total fitness climbed (on average)  for a certain amount of iterations, and then stabilized. 
The overall best  solution for the GA optimization occurred first at  the point of total fitness 
stabilization. 
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Figure 9: GA Optimization: 2 Dampers. The stars represent the  optimal locations. Pairs of 
l’s,2’s, etc.  represent  locations for each initial chromosome. 

9.4 Multiple Damper Placement 
In order to compare  results for multiple  dampers  (without regard to optimization  method), 
a nominal  model was created by assuming zero dampers  and .l% damping  in all modes of 
the model. This value was used as a reference  in order to express performance in dB. 

* 

Note that ,7 with any number of dampers will be,less than 3 with zero dampers. Therefore, 
in terms of dB defined above,  better performance will have a more negative dB d u e .  Figure 
12 shows the results. All dampers have a value, G, of 7.005 x lo4 Ns/m . The maximum 
number of damper locations is 94. Therefore, the performance value at 94 dampers of 
-39.58dB forms a floor for the performance function.  This  indicates  two  orders of magnitude 
improvement in  vibration  attenuation could  be  achieved  using these dampers.  The minimum 
number of damper locations is 0. Therefore, the performance value of OdB forms a ceiling for 
the performance  function. We see that by placing dampers at optimal  locations, we obtain 
significant performance value by using  only a few dampers.  Indeed, by using only 2 dampers, 
we obtain over haif of the maximum performance available. 
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Figure 10: SA Optimization Search Pattern: 2 Dampers. The circles on  the lower right 
triangle show the locations checked; the  star represents the  true  optimal  solution. 

10 Conclusions 
Vibration attenuation will be crucial to next  generation space observatories that use interfer- 
ometry.  Damper placement will be a challenging issue for these systems. As new optimization 
schemes are developed, this process will hopefully become  more and  more efficient. In this 
paper, we introduced a general methodology for damper placement in interferometers. This 
methodology  included  optical-structural modeling, damper modeling, 3.100 cost functional 
formulation, and combinatorial  optimization. The cost functional based on 811 7-t- norm 
allows multiple  dissimilar  disturbance sources and multiple dissimilar performance  outputs. 
Both GA and SA optimization were investigated.  Both techniques produced  quality solu- 
tions. However, the SA algorithm was much more efficient  for this  problem. 
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